首页> 外文OA文献 >An automated approach to map the history of forest disturbance from insect mortality and harvest with landsat time-series data
【2h】

An automated approach to map the history of forest disturbance from insect mortality and harvest with landsat time-series data

机译:利用陆地时间序列数据自动绘制昆虫死亡和收获的森林干扰历史图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Forests contain a majority of the aboveground carbon (C) found in ecosystems, and understanding biomass lost from disturbance is essential to improve our C-cycle knowledge. Our study region in the Wisconsin and Minnesota Laurentian Forest had a strong decline in Normalized Difference Vegetation Index (NDVI) from 1982 to 2007, observed with the National Ocean and Atmospheric Administration’s (NOAA) series of Advanced Very High Resolution Radiometer (AVHRR). To understand the potential role of disturbances in the terrestrial C-cycle, we developed an algorithm to map forest disturbances from either harvest or insect outbreak for Landsat time-series stacks. We merged two image analysis approaches into one algorithm to monitor forest change that included: (1) multiple disturbance index thresholds to capture clear-cut harvest; and (2) a spectral trajectory-based image analysis with multiple confidence interval thresholds to map insect outbreak. We produced 20 maps and evaluated classification accuracy with air-photos and insect air-survey data to understand the performance of our algorithm. We achieved overall accuracies ranging from 65% to 75%, with an average accuracy of 72%. The producer’s and user’s accuracy ranged from a maximum of 32% to 70% for insect disturbance, 60% to 76% for insect mortality and 82% to 88% for harvested forest, which was the dominant disturbance agent. Forest disturbances accounted for 22% of total forested area (7349 km2). Our algorithm provides a basic approach to map disturbance history where large impacts to forest stands have occurred and highlights the limited spectral sensitivity of Landsat time-series to outbreaks of defoliating insects. We found that only harvest and insect mortality events can be mapped with adequate accuracy with a non-annual Landsat time-series. This limited our land cover understanding of NDVI decline drivers. We demonstrate that to capture more subtle disturbances with spectral trajectories, future observations must be temporally dense to distinguish between type and frequency in heterogeneous landscapes.
机译:森林包含生态系统中大部分的地上碳(C),因此了解扰动造成的生物量损失对于提高我们的C循环知识至关重要。我们在威斯康星州和明尼苏达州劳伦森森林的研究区域,从1982年到2007年,归一化植被指数(NDVI)大幅下降,这是通过美国国家海洋和大气管理局(NOAA)系列的超高分辨率高分辨率辐射计(AVHRR)观察到的。为了了解干扰在陆地C周期中的潜在作用,我们开发了一种算法,可绘制Landsat时间序列堆栈中来自采伐或昆虫暴发的森林干扰图。我们将两种图像分析方法合并为一种用于监视森林变化的算法,该算法包括:(1)多个干扰指数阈值以捕获明确的收获; (2)基于光谱轨迹的图像分析,具有多个置信区间阈值以绘制昆虫暴发图。我们制作了20张地图,并通过空中照片和昆虫空中调查数据评估了分类精度,以了解算法的性能。我们获得的总体准确度从65%到75%不等,平均准确度为72%。生产者和使用者的准确度最大为32%至70%的昆虫干扰,60%至76%的昆虫死亡率和82%至88%的砍伐森林,后者是主要的干扰因素。森林干扰占森林总面积(7349平方公里)的22%。我们的算法为绘制干扰历史记录提供了一种基本方法,该历史记录对林分发生了重大影响,并突显了Landsat时间序列对落叶昆虫暴发的有限光谱敏感性。我们发现,只有一个非年度Landsat时间序列才能以足够的精度绘制出收获和昆虫死亡事件的地图。这限制了我们对NDVI下降驱动因素的了解。我们证明了要捕获频谱轨迹的更多细微扰动,未来的观测必须在时间上密集以区分异质景观的类型和频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号